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Abstract—In this paper we propose a framework of customer
baseline load (CBL) estimation for demand response in Smart
Grid. The introduction of demand response requires quantifying
the amount of demand reduction. This process is called the
measurement and verification. The proposed framework of CBL
estimation is based on the unsupervised learning technique of
data mining. Specifically we leverage both the self organizing
map (SOM) and K-means clustering for accurate estimation.
This two-level approach efficiently reduces the high dimension
of the input vectors into two dimensional output using SOM,
and then this output vectors can be efficiently clustered together
by K-means clustering. Hence we can easily find the load pattern
that is expected to be similar to the potential load pattern of
the day of demand response (DR) event. To validate our method
we perform large scale experiments where the building complex
power consumption is monitored by 2,500 smart meters. Our
experiments show that the proposed technique outperforms a
series of the day matching methods. Specifically, we find that the
root mean square error is reduced by 15–22% in average, and
the mean absolute percentage error is reduced by 15–20% in
average as well.

I. INTRODUCTION

In the electricity industry, demand side management (DSM)
refers to the programs that attempt to influence customers’
electricity consumption patterns to match electricity supply.
Demand response (DR) is one of the key components of DSM
[1], [2]. DR is defined and used by the U.S Department of
Energy (DoE) and subsequently adopted by the Federal Energy
Regulatory Commission (FERC) stated as ‘changes in electric
usage by end-use customers from their normal consumption
patterns in response to changes in the price of electricity over
time’ [3].

Recently, the independent system operators (ISOs) make
efforts to implement DR programs to liberalize electricity
markets and reduce extra generation cost. The performance
of DR programs is measured by the amount of power re-
duction that customers achieve, and thus the measurement
and verification (M&V) process is required to verify the
amount of load reduction when DR is activated. The advanced
metering infrastructure (AMI) is used to collect the electricity
consumption data. Smart meters first collect the data from the
end users and then relay the data to local data collection units
(DCUs) periodically, e.g., 15, 30 or 60 minutes. DCUs in turn
relay the data to the utility servers.

To measure the amount of load reduction, we need to know
two factors: the customer baseline load (CBL) and the actual
load. CBL refers to the amount of electricity the customers
would consume if DR were not activated. The actual load
is the amount of electricity the customers consume during

the DR event period. Then, the amount of load reduction is
computed by the difference between CBL and the actual load.
The accurate calculation of CBL is crucial to the success of DR
programs because, otherwise, it is unclear how much power
is reduced, and it is hard to determine the proper monetary
reward that should be paid to the customers. For example,
if the computed baseline load is too low, the customers are
less motivated to participate in the DR program. Hence, the
accurate baseline load estimation prediction is required for
both the utility company and the customers [4].

Two widely adopted methodologies for baseline load es-
timation are the day matching method and the regression
analysis. The day matching method takes a short historical
period and estimates the electricity usage of the DR event
day by simply averaging the data during the short period
such as 5, 8 or 10 days. For example, the New England ISO
uses five equivalent days prior to the DR event day while the
California ISO (CAISO) uses three equivalent day. The Korea
Power Exchange (KPX) takes the four highest demand days
among the five equivalent days. The regression analysis creates
a model based on statistical regression methods [5].

Load prediction has been one of the most important re-
search topics. Specifically, there are several works related to
short-term load prediction considering the weather. In [6], [7],
the relationship of electricity demand and the weather was
developed by transfer function where the daily load forecasting
is computed from the cooling and heating condition. Another
method for load prediction is to apply the artificial neural
network (ANN). Typically, 24 neurons are used to forecast
the hourly loads of the next 24 hours [8].

However, the above-mentioned methods are mainly about
load prediction for the benefit of electricity suppliers. By
contrast, the establishment of baseline load is focused on the
demand side. The accurate demand prediction can motivate
the customers to participate in the DR programs and to receive
monetary rewards from the utility company. In [9], CBL calcu-
lation using the exponential smoothing model with weather ad-
justment was proposed. They exponentially weighted the past
data with multiplicative adjustment. Recently, the Lawrence
Berkeley National Laboratory (LBNL) found that applying the
morning adjustment factor can reduce the bias and improve the
accuracy of CBL [5].

In this paper, we propose a novel CBL calculation frame-
work using the data mining techniques that exploit the Koho-
nen networks model and the unsupervised learning algorithm.
We summarize our key contributions as follows. First, we build
a framework of CBL estimation based on the data mining
approach. Historical data are used to analyze the customers
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Fig. 1. Framework of the baseline load computation.

electricity consumption behaviors for DR. Second, we con-
duct the experiments on the real database of the large scale
industrial building complex in Korea. This site has an area of
452,647m2, and the advanced technologies for DR are applied.
The number of deployed smart meters is approximately 2,500.
Third, comparing the errors for each day indicates that our
approach outperforms other algorithms. The results show that
our data mining approach results in 15-22% less root mean
square error, and 15-20% less mean absolute percentage error,
respectively.

This paper is organized as follows. In Section II, we set
up the data mining structure for CBL calculation and propose
our algorithm. Section III describes a case study using the real
measurement data from the commercial complex buildings to
validate the proposed algorithm. In Section IV we conclude
our work with remarks and future work.

II. DATA MINING BASED APPROACH

In this section, we describe the data mining framework to
develop the CBL calculation as depicted in Fig. 1. The frame-
work of CBL is based on a knowledge-discovery in databases
(KDD) procedure supported by data mining techniques [10].

A. Data preprocessing

The data mining model for CBL calculation is based on the
unsupervised learning techniques. Before setting up a model
for our work, the data preprocessing needs to be done in
advance. This is because some information can be distorted
or missing during the period of collecting data and storing it
to the utility server. This process includes three phases such
as data selection, data cleansing and data reduction.

In data selection, more significant data is selected to pro-
cess from the initial database. In our case, it is made according
to the power level of the consumers. In data cleansing, we

check the data inconsistency and find the outliers that distort
the information about the customer facilities such as offices,
factories or buildings. Inconsistent electricity consumptions are
replaced by the average of the daily consumption. In addition,
some missing values are also replaced by the daily average or
removed at all according to the volume of missing data.

In data reduction, we first classify the load condition in
terms of the seasons of the year and the type of weekday
to reduce the data size because the electricity consumption
depends on the day type, i.e., either week or weekend, and the
seasonal weather. The electricity consumption pattern of each
day is then characterized by a single curve called load vector.
The representative daily load vector of the day i ∈ {1, · · · , N}
is a vector li = {li(h)} where li(h) is the normalized values of
the instant power consumed in the period of h ∈ {1, · · · , H}
where H is the total number of periods in a day, e.g., H = 24.

B. Self-Organizing Map (SOM)

SOM was introduced by Kohonen [11]. SOM is one of
the ANN architectures for the unsupervised classification of
data into clusters [12]. SOM maps a multi-dimensional input
space onto a topology-preserving output space with greatly
reduced dimension where neighboring neurons (or units1)
respond to similar input vectors. Each unit in the output space
is assigned a weight vector with the same dimensionality of
the input space, but SOM consists of two dimensional grid
of map units. Each unit s ∈ S is a represented by a vector
ms = {ms1, . . . ,msd}, where d is the dimension of the
input vector. Each unit is connected to the adjacent units by
the neighboring relation. SOM is trained iteratively. At each
training step, the input vector denoted by x is randomly chosen.
The distance between x and all map units are computed. The
best matching unit, denoted by b, is the map unit with the
closest to x, i.e.,

b = argmin
s∈S

‖x−ms‖. (1)

Next, the map units are updated. The best matching unit of (1)
and its close neighbors are moved such as

ms(t+ 1) = ms(t) + α(t)hbs(t)(x−ms(t)) (2)

where t is the iteration index, α(t) is the learning parameter
and hbs(t) is the neighborhood relation function [12]. The
magnitude of the adaptation is controlled via the learning
parameter that decays over iterations. This process is repeated
for all input vectors so that the different grid of map units
harmonize with specific domain of the input variable which
contains daily load diagram.

C. K-means clustering

K-means clustering partitions a data set into K clusters.
This process is done without any prior knowledge about the
data structure such as the number of groups, labels, and sample
members. A widely adopted definition of optimal clustering is
to form a partition that minimizes the distances within the
intra-clusters and maximizes the distances among the inter-
clusters. Given a set Z of SOM operation outcomes and
an integer number K, the K-means algorithm searches for

1We use the neuron and the unit interchangeably.
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a partition of Z into K clusters that minimizes the with-
in groups sum of squared errors (WGSS). Mathematically, is
given by [13] such as

minimize P (W, C) =
K∑

k=1

N∑
i=1

wi,kd
2(Zi, Ck) (3)

subject to
K∑

k=1

wi,k = 1, ∀i ∈ {1, . . . , N}

wi,k ∈ {0, 1}, ∀i ∈ {1, . . . , N}
∀k ∈ {1, . . . ,K}

where W is an N×K partition matrix, C = {C1, C2, . . . , CK}
is a set of clusters in the same domain where Ck, k =
1, · · · ,K, denotes the centroid point in the cluster k, and
d2(·, ·) is the square of the Euclidean distance between two
variables. The problem (3) is solved iteratively until no further
change occurs in the cluster points.

D. The Proposed Algorithm

In this subsection, we propose an algorithm for calculating
CBL. Basically this algorithm finds the most similar load
patterns from the historical data and average them by hourly
load.

There were many attempts to cluster the large data using
SOM [12]. The primary benefit of two-level approach, i.e.,
first applying SOM and then using K-means clustering is the
reduction of the computational cost. SOM efficiently trans-
forms the large dimensional data space into two dimensional
space. K-means algorithm is commonly used for clustering the
data. However it is hard to handle noisy data and outliers. By
combining these two models, we create more accurate solution
dealing with large data sets.

We develop a framework that calculates the baseline load
using the measured data, which is summarized in Algorithm
1. When DR event occurs, DR event time goes to the input
variable. In the procedure, 12-hour load vectors prior to the DR
start time for the day and the past days are formed from the
database. Note that to improve the accuracy, we deliberately
append the average temperature and the specified morning
factor into the input vector. Specifically, as shown in Table
I, X1 to X12 are the hourly consumption before DR event
occurs, X13 indicates the average temperature in the morning
(8:00 AM-12:00 AM). We set the morning factor (X14) as the
average gradient of the electricity consumption curves because
the gradient contains a useful information of finding the similar
data. X15 is the working availability in weekdays.

In the next step, the grid of map units is initialized
randomly. This is an M × N matrix that can represent the
input data. Through the iteration steps of finding the best
matching units (BMU) and updating the units as in (1) and
(2), respectively, the output of SOM operation can represent
the historical data in the 2-dimensional space Z = (m,n) ∈ Z
where m ∈ {1, · · · ,M} and n ∈ {1, · · · , N} represent the
coordinate in Z . After the SOM operation, the input vectors
have their own SOM values and are assigned to one of the units
in the grid. In other words, each input vector is assigned to the
appropriate cluster. By minimizing the WGSS, this procedure
produces K clusters as the output as described in (3). In the
final step, we can find the best similar patterns of electricity
consumption in the past. By averaging hourly load from this

Algorithm 1 Baseline Load Estimation Algorithm
1: procedure LOADPROFILE
2: for ∀i ∈ {1, · · · , N} do
3: Xi1, · · · , Xi12 ← 12-hour load
4: Xi13 ← average temperature
5: Xi14 ← morning factor
6: Xi15 ← work availability
7: end for
8: repeat
9: find the BMU of input vector

10: update the units of grid
11: until
12: maximum number of iterations
13: repeat
14: assign data points to cluster and solve problem (3)
15: update cluster centers
16: until
17: no cluster changes
18: end procedure

TABLE I. INPUT VECTOR FOR SOM OPERATION

X1...X12 12 hour consumption before DR activation
X13 Average Temperature
X14 Gradient of the load consumption (optional)
X15 Work Availability (optional)

outcome, the predicted CBL is obtained.
Note that the proposed algorithm has two key differences

with the existing CBL methods. First, unlike the day matching
methods, we find the most similar day given partial data.
Second, we consider other parameters such as average temper-
ature, the gradient of electricity consumption, work availability.
By learning process, SOM output describes the data structure
by matrix. Clustering output indicates the representative load
of the database.

III. CASE STUDY: LARGE SCALE EXPERIMENTS

To validate the proposed CBL algorithm, we data-mine the
data that have been collected by smart-meters in an industrial
building in Seoul, Korea. This building is a component of large
scale industrial building complex consisting 17 buildings for
factory apartment, office, etc. The complex has an area of
452,647m2 and several key technologies for DR have been
applied such as AMI system (about 2,500 devices), BEMS,
user feedback service (11 buildings, 1,100 units), parallel
emergency generator system and market based electricity pric-
ing simulation. We perform a large scale experiment to verify
the proposed algorithm. Our database contains 12 months
electricity consumption data. The instant power consumption
for each day was collected at intervals of 15 minutes, and we
get the hourly load by addition for convenience. Fig. 2 shows
the typical consumption pattern of the industrial building
monitored for the experiments. We note that this building
reaches 1.3 MW peak value between 12:00 PM to 14:00 PM.

A. Data processing

A part of data usually have bad quality in the real database;
the database has some problems including wrong information
and missing data. In the pre-processing phase, these data
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Fig. 2. Typical load curves of the industrial building.

have been corrected. The outlier and outages are detected and
replaced by regression technique based on the similar days.
With this procedure, the quality of the data has been improved
with a minimal loss of information. These data are reduced
and normalized using the procedure presented in Section II.
After that, other parameters such as temperature, the morning
factors, work availability are included into the input vector.

We use a 10×8 neuron architecture in SOM as can be seen
in Fig. 3. The size of neurons are determined to maximize the
so-called explained variance. Fig. 3 indicates the links among
the neurons as well. It is called the unified distance matrix
(U-matrix), which is a representation of a self-organizing
map. The Euclidean distance between neighboring neurons is
described in a gray scale image. U-matrix gives insights into
the local distance structure of the high dimensional data set.
It has become the standard tool for the display of the distance
structures of the input data. For each unit in U-matrix, we
assign the dark gray color to the unit that has a large number
of close units. Similarly we assign the light gray color to the
unit that has a small number of close units. The other shades
of gray corresponds to the level of distance between units. The
circles inside the unit hexagonal cells indicates how many data
points are close to a particular unit. A larger circle means that
there are more data representing the unit cell.

B. Determination of the number of clusters

The number of clusters is the input of the K-means
clustering algorithm. In the unsupervised learning algorithm,
choosing the proper number of group is critical. There are
several methods for estimating the appropriate number of
clusters. For example, the mean index adequacy (MIA) was
proposed in [14]. This can be expressed as

MIA =

√√√√ 1

K

K∑
k=1

d2(r(k), C(k)). (4)

We divide N input vectors into K clusters. Each cluster is
formed by a subset C(k) of load vector, where r(k) is a
representative load vector assigned to cluster k. MIA can

Fig. 3. Unified distance matrix of input load vector.

be obtained by averaging the square Euclidean distance (d2)
between this representative load vector and subset load vector.

The smaller values of MIA indicate more compact clusters,
which means more accurate baseline load can be obtained. The
K-means clustering algorithm was used to study the cluster
tendency of the data based on the MIA measure. Through this
process, the number k is obtained and presented in Fig. 4. We
propose k = 14 is the best choice for clustering. MIA will be
decreased when k is large. However, the number of data point
in each cluster is also decreased, which makes it hard to build
a model. We assume the minimum number of data in each
cluster should be 5. As k is increasing, non-qualified clusters
also increased in Fig. 4.

C. Numerical Results

In this subsection, we compare our proposed method with
the day matching method. It is generally accepted that a period
of approximately 10 days reasonably represents consumption
for normal operations. Especially, LBNL suggested taking
hourly usage in highest 3 out of 10 previous days which is
called the baseline load profile 3 (BLP3) method [5]. Another
approach is to select high 5 days out of 10 days, i.e., for a
given time interval, baseline load is calculated as the average
interval demand among the 5 highest energy usage days out
of the prior 10 days.

Two criteria commonly used to evaluate the accuracy of
load forecasting are the root mean square error (RMSE) and
the mean absolute percentage error (MAPE) [15],

RMSEi =

√√√√ 1

H

H∑
h=1

(l̂i(h)− li(h))2 (5)

MAPEi =
100

H

H∑
h=1

|l̂i(h)− li(h)|
li(h)

(6)

where H is the number of time intervals in ith day, li(h) are
real electricity consumption, and l̂i(h) are estimated CBL.

Table II presents the final distribution of the days into 14
clusters after SOM and K-means clustering (2 clusters are null
spaces). Each cluster corresponds to the different patterns of
the customers. The representative load profiles are obtained
by averaging load vectors in the same cluster and presented
in Fig. 5. The created load profiles have distinct load shapes
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Fig. 4. MIA and non-qualified clusters with the number of clusters.

TABLE II. NUMBER OF DAYS WITHIN EACH CLUSTER

Cluster 0 1 2 3 4 5 6

Working Days 15 16 9 0 46 22 20

Cluster 7 8 9 10 11 12 13

Working Days 11 18 32 0 17 22 15

according to their consumption patterns. For the experiment,
we test our method and other existing ones for each working
day in a month. We assume the DR event day in summer
because of the high peak load. DR events usually occur during
the afternoon and the early evening and does not last longer
than 6 hours. Most reports states that DR started between 1:00
PM and 2:00 PM in historically [16]. Hence, we assume the
DR starts at 1:00 PM.

We calculate the RMSE, MAPE values for each day in
August and plot them in Figs. 6-9. In RMSE evaluation, our
method has 15% to 22% lower error than the day matching
methods in average. In case of MAPE, our method has 15% to
20% lower error than the day matching methods in average. As
can be seen, the day matching methods are sometimes better
than our proposal in Fig. 6 and 7. This could happen when the
customers consumption patterns are highly similar to the past
a few days. In addition, the cumulative probability function
(CDF) of the error is used for measuring the precision of the
CBL. As can be seen in Figs. 8 and 9, we see that the proposed
method outperforms the day matching methods.

IV. CONCLUSION AND FUTURE WORK

In this paper we proposed a framework of customer
baseline load estimation for demand response. Unlike the
conventional techniques such as the day matching methods,
we leveraged the data mining techniques, SOM and K-means
clustering to find the days that are expected to have the
most similar load patterns to the day of DR event. In SOM
operation we augmented the load vector with up to three
other attributes such as the morning factor, the day type
and the average temperature for better classification. Then,
we applied K-means clustering to group the days that have

Fig. 5. Load profiles of historical day classes.

Fig. 6. Performance of the CBL models (RMSE).

Fig. 7. Performance of the CBL models (MAPE).
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Fig. 8. Cumulative distribution function of RMSE.

Fig. 9. Cumulative distribution function of MAPE.

similar load patterns. In determining the number of clusters, we
exploited both the MIA and the number of small size clusters.
To verify the proposed framework we performed large scale
experiments where electric power consumptions are collected
by 2,500 smart meters. The results show that our framework
significantly improves the accuracy of the load estimation.
Specifically, compared to the day matching methods, the root
mean square error was reduced by 15-22% in average and the
mean absolute percentage error was reduced by 15-20% in
average as well.

The results of this paper can be further extended in several
directions. First, accumulating database can provide more
accurate CBL calculation. In this study, we have 12-month
load vectors, but more data are expected to be available shortly.
Second, different type of adjustments for CBL can reduce the
error rate of the prediction. Although the weather based CBL
adjustment is complex to verify, the adjustment based approach
can be preferable. Third, it would be good to compare our
framework with other CBL algorithms such as different learn-
ing approaches, the weather exponential smoothing models,
etc.
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