

Abstract — Emerging smart grid networks are expected to have

massive amounts of data continuously generated from various

measuring devices (intelligent sensors, advanced meters, electric

vehicle charging stations) which are embedded in the power grid.

Data generated from these measuring devices must be delivered

securely and reliably to utility control centers for wide-area

monitoring and control and to estimate the overall grid status in a

timely and precise manner. The collected data is also used for

incentivizing consumer participation for improving power stability.

Transport protocol requirements for such periodic grid

measurement data are characterized as lifetime-lived, secure, and

reliable delivery of short flows (usually less than 1.5 KB) over

utility-Wide Area Networks (WANs). However, our survey shows

that there is no well-known transport protocol that can support the

above characteristics in a scalable and light-weight manner.

Motivated by this, we design a scalable and secure transport

protocol, SSTP, exploiting the notion of a “State-token” which is

issued with each server message and which is subsequently

attached to corresponding client message delivered to the server.

Compared with existing well-known transport and security

schemes, SSTP enables scalable server deployments as servers do

not keep state (for security and communication) per client and thus

computation/memory overheads are significantly reduced.

I. INTRODUCTION

The limited communication and security capability of non-IP

based networks, currently deployed in utility power grids, are

crucial impediments to future smart grid deployments aimed at

improving energy efficiency, resiliency against power flow

disruptions, and reducing carbon emissions by incorporating

renewable energy sources. Therefore, the power industry is

undergoing a major network transformation by designing a new

IP-based smart grid communication network with enhanced

security and reliability.

One distinguishing aspect of the smart grid communication

network is the large-scale deployment of sensors and smart

meters which send periodic updates to the utility control center;

e.g., in Manhattan, NY, several million meters must be deployed

to cover all customer households. The IP network being

deployed is expected to transport the sensor data in a trustworthy

(secure and reliable) fashion to the utility’s control centers,

where the data will be used to evaluate the grid state, and current

electricity consumption. However, the sensors that generate the

data are typically computationally constrained entities. It is in

this context that we consider the specific problem of designing

transport protocols that can scalably and securely deliver

sensing data with low overhead in terms of memory space,

computation, and communication bandwidth.

Sensor data collection [1] is an integral part of smart grid

communications. The data traffic generated from sensors or

meters, which are typically located beyond utility security

perimeters, is expected to be carried over a purpose-built utility

network. The purpose-built utility network is isolated from the

highly critical SCADA-based communication network
1
. It is

also isolated from the public Internet
2
 because of the significant

security and availability issues that are encountered when utility

data traffic is multiplexed with Internet data traffic.

The general characteristics of smart grid sensor data can be

described as follows. First, data is carried over semi-permanent

security and transport associations between sensors and utility-

side servers. Second, on the purpose-built utility network, data

toward utility (north-bound data), such as meter readings, is

periodically collected; in contrast, data originating from the

utility (south-bound data), such as management information, is

relatively rare. This implies that north-bound data would

dominate network resource consumption, as compared with

south-bound data. Third, north-bound data must be delivered in

a reliable and timely fashion for precise estimation of instability-

induced conditions like a large mismatch between actual

electricity usage and electricity supply based on day-ahead

demand prediction. Comparatively, south-bound data to sensors

or meters is not critical for reliable and timely delivery, since

this information can be easily overridden by new data. Fourth,

secure communication ensuring data credibility is necessary for

safe power grid operations. We note that security requirements

do not need to be symmetric. For example, authentication is

mandatory for delivering the southbound electricity price

information, but there is no requirement for confidentiality. In

contrast, for the north bound metered data, both authentication

and confidentiality are critical. Lastly, field sensors are unlikely

to have a full set of operating systems and protocol stacks due to

limited computation resources, while utility-side servers have

plentiful computing resources to deal with the significant

amount of data received from the large number of deployed

sensors. E.g., TI MSP 430 microcontroller series [2] adopted in

many sensor hardware platforms feature 2-18KB RAM, 1-

256KB EPROM, and 8-16MHz CPU: a subset of OS and

protocol features can be installed for the platforms; however,

due to lack of storage space, data has to be delivered to servers

1
 In this paper, the term, smart grid communication network, does not include the

traditional SCADA communication between utility control center and substations that

contain mission-critical power equipments. Note that the SCADA communication

network is being improved through advanced IP technologies like MPLS for timely

monitoring of substation status and safely controlling critical power equipments.
2
 Note that Open Automated Demand Response (OpenADR) driven by National

Lawrence Berkeley Lab is to our best knowledge the only known proposal replying on

a public network. OpenADR documents outline technology neutral communications

specification and data models using Internet-based Web Services to send demand

response signal to end-use customer systems (http://openadr.lbl.gov).

SSTP: a Scalable and Secure Transport Protocol
for Smart Grid Data Collection

Young-Jin Kim, Vladimir Kolesnikov, Hongseok Kim, and Marina Thottan
Bell Labs, Alcatel-Lucent

Murray Hill, NJ, USA

 {young.jin_kim, kolesnikov, hongseok.kim, marina.thotthan}@alcatel-lucent.com

Communication Networks for Smart Grid (IEEE SmartGridComm)

978-1-4577-1703-1/11/$26.00 ©2011 IEEE 173

in a utility network. To the best of our knowledge, there is no

published protocol that accommodates above data transport

requirements in a scalable and lightweight manner.

To remedy the situation, we propose a scalable and secure

transport protocol SSTP for smart grid data collection that

addresses the above requirements. The key idea of SSTP is that

the server does not need to maintain any state (for security and

communication) on a per client basis. Our main contributions in

this work are: (1) We design an inherent and lightweight

security scheme for the SSTP protocol thus removing the costly

dependency on support for TLS [3] or IPSec [4], (2) Our

proposed state-token concept enables scalable stateless server

deployments for data collection. One important security and

transport benefit of implementing a stateless server is that SYN

(the connection request in TCP) flooding from a large number of

clients induced by server restarts or failures can be avoided.

To motivate our design consideration, we first begin with a

survey of current transport and security protocols, and highlight

the necessity for designing novel scalable transport protocols for

smart grid data collection. We will subsequently describe the

protocol details for the Scalable Secure Transport Protocol

(SSTP) along with its performance evaluation.

II. REVIEW OF EXISTING TRANSPORT PROTOCOLS

We now show that none of the existing transport protocols

meets the security and reliability characteristics of the smart grid

sensor data network in a scalable and lightweight manner.

 TABLE I: FEATURES OF TRANSPORT PROTOCOLS.

Features TCP SCTP SSTP

Security Schemes TLS or IPSec TLS or IPSec Inherent built-in

Flooding Attacks Cookie [5-6] Cookie [7] Cookie [6]

Connection
Establishment

Three-way
handshake

Four-way
handshake

Four-way
handshake

Duplex Comm. Yes Yes Mostly simplex

Reliable Delivery ACK with SACK ACK with SACK ACK

In-ordered delivery Mandatory Optional None

Sender-side delay Congestion Control Congestion Control None

Receiver-side delay Delayed ACK Delayed ACK None

Flow Control Receiving window Receiving window Sending window

Transmission or
Reception Buffer

128KB per
connection3

128KB per
connection

 Chosen by
applications

Multi-homing/stream No Yes No

Security and Scalability: As shown in Table I, no well-known

protocol has inherent data authentication and confidentiality

extensions to prevent eavesdropping, tampering, or message

forgery. Instead, external mechanisms such as TLS or IPSec are

typically employed for ensuring data security. This is not

problematic in itself; however this results in significant overhead

in terms of negotiation procedures to accommodate low

computing capable end devices. In addition, there is a concern as

to whether TCP and SCTP can address end-to-end security for

large-scaled and lifetime-lived communication environments in

a scalable manner. Consider hourly meter readings in New York

City. From networking aspect, meters send measured data to

either far-side utility control center (UCC) or near-by

3
 For ensuring stable performance, 128KB is a default size tuned in Linux

distributions. As shown in [8], RAM footprints for TCP and SCTP can be reduced

even to 2KB and 12KB respectively. However, as described in [9], reduction to 2KB

for TCP stack has to be carefully dealt since it is a trade-off between footprint

reduction and performance degradation.

aggregators from where the data is forwarded to utility UCC

(split-aggregation [10]). In the former case, for a given number

N of meters, UCC must either permanently keep O(N) states

(security info, tx/rx buffer, connectivity info) or process O(N)

secure connection requests per hour for meter readings. Neither

of these approaches can avoid scalability concerns and single

point of bottlenecks/failures in the UCC. On the other hand, the

split-aggregation approach may be better with respect to

performance and scalability. Unfortunately, this approach

compromises the end-to-end confidentiality as it cannot

maintain a TLS (or IPSec) session that spans from meters to

UCC. Thus, data has to be decrypted at the aggregators and then

encrypted again. Additionally, the overhead (memory footprint

and CPU load) required for executing TLS along with either

TCP or SCTP is expensive for resource-constrained end devices.

Availability and Scalability: Existing well-known connection-

oriented transport protocols may incur SYN flooding when a

utility-side server associated with a large number of sensors or

meters is abruptly restarted or failed. All sensors associated with

this server will simultaneously send thousands of connection

requests to the server to reestablish their security associations

with the utility as soon as possible. It would happen immediately

after a restart or a power outage, regardless of the need to send

any data to the UCC. Thus, transport protocols for smart grid

data collection must address the SYN flooding problem and also

be able to scalably manage lifetime-lived associations.

TCP Latency & Reliability: In-order sequenced delivery of

TCP can significantly increase latency under frequent packet

drop in routers or packet loss over wireless links. TCP receivers

buffer those received segments that are higher than the expected

sequence number. This prevents the data from being delivered to

a corresponding application until a segment having the expected

sequence number arrives. This re-sequencing delay in the

receiver results in increased end-to-end latency. However in-

order delivery is not required for smart grid data transport as

data is always time-stamped at the sender side. Note that in-

order delivery can be disabled in SCTP, as shown in Table I.

Delayed acknowledgement [11] typically enabled by default in

TCP Reno or later versions reduces the number of ACKs to be

sent-back to senders, and, accordingly, throughput and resource

utilization are highly improved. However it can still increase the

latency by up to 40ms under periodic data delivery for data sizes

that are smaller than the maximum segment size (MSS).

Typically, sensor data size is no more than 1KB [12]. For

avoiding this receiver-side-induced latency problem, the delayed

ACK timeout (in Linux, /proc/sys/net/ipv4/tcp_delack_min) can

be reduced by administrators, but this is not a recommended

action as manipulating the option can degrade performance [11].

TCP enables reliable delivery by using the cumulative

acknowledgement scheme. Thus, it follows that average TCP

end-to-end delay [13] is more than one RTT (Round-Trip Time)

even under ideal network conditions, where no packet is

dropped or lost, and there is no delay caused by flow control due

to the large sliding window size on the receiver side. TCP

congestion control schemes [14] can prolong delivery latency in

the face of packet drop or loss. The sender-side retransmits lost

segments after receiving either three duplicated

174

acknowledgements received (fast recovery) or a timeout is

expired (slow start). These schemes were devised for avoiding

unnecessary retransmissions by discriminating between lost

segments and late-arriving segments which took a longer path (it

can occur due to IP routing protocols such as OSPF). Thus, the

sender-side by design increases the retransmission delay. The

TCP congestion control algorithm limits the data injection speed

until network recovers from the congestion event. Selective

acknowledgement scheme [15] combined with the cumulative

acknowledgement scheme deal with latency issues by quickly

recovering multiple lost segments. However, the first among

recovered segments has no performance gain as its delivery is

tried only after the receipt of three duplicate acknowledgements.

Latency, Heavyweightness, & NAT-unfriendliness of SCTP:

SCTP was devised to deliver aggregated telephony messages

between high-powered telecommunication systems with

multiple line cards. For avoiding line blocking in one multi-

streamed connection, in-order sequenced delivery is disabled in

SCTP and thus the buffering delay in the receiver side is

reduced. However, SCTP is not completely free of the latency

issues of TCP, due to the congestion control and delayed ACK

implementation inherited from TCP. Also, it is unlikely that

SCTP can run on sensors or meters with limited computing

resources (e.g., 10 KB RAM), as even the SCTP lightweight

version [8] is relatively heavy in terms of memory usage and

CPU load for message processing. Moreover, a recent report

[16] shows that the choice of SCTP must be made carefully

under environments with NAT (Network Address Translation)

traversal. Most currently deployed NAT boxes are not SCTP-

friendly. However, due to its high assurance features, SCTP may

be a good transport candidate for some smart grid applications,

such as substation automation, requiring multi-homed

communications between the UCC and the substations

Based on this review we conclude that existing transport

protocols are insufficient to address the transport characteristics

of the smart grid sensor network. We next discuss design

motivation of the SSTP. First, we point out that the smart grid

sensor network typically consists of measured data whose size is

such that it can be contained in one protocol message without

being segmented into multiple chunks. It means that traffic flow-

based semantics employed in most known transport protocols

are inappropriate in this case. Also, since the data is carried over

a purpose-built utility network, packets are rarely lost due to

congestion. It means that a congestion control scheme is also not

required for the data collection.

III. DESIGN OF SSTP

In our approach, we address all inefficiencies of prior protocols

and build our presentation in a top-down manner for simplicity

of presentation and understanding.

A. Overview of the approach

Our main goal for SSTP is scalability both in terms of security

and communications. Due to the special communication patterns

of data collection – a large number of clients infrequently

communicating with servers, we identify the following avenues

for significant optimizations.

Symmetric-key-based protocols: In data collection, clients

only talk to the server, and one pre-shared key (PSK) per client

will suffice. In this setting, the use of costly public-key

credentials will not bring its benefit of system-wide reduction of

the number of keys. Since symmetric key operations are

hundreds of times faster than public-key ones, SSTP using only

symmetric-key operations for all security extensions.
4

Server’s state independent of the number of clients: In data

collection such as meter readings, the server must continuously

maintain associations with a very large number of clients, who

communicate periodically-but-infrequently. Maintaining such

associations is very taxing on system resources, if, as is standard

in practice and research protocols, the server in fact keeps

security and transport information associated with the session

(keys, counters, and so on.). Our basic idea is to provide a light-

weight (both for client and the server) implementation which

encrypts and authenticates the associated session state, and then

gives the resulting encryption for the client to temporarily store

and returns it to the server with his next message. In this way, a

server does not keep session state after sending the encryption

back to a client and can quickly restore it when the next message

from the client arrives. Note that our idea can avoid extreme

overloading in the face of server restart or failures.

Lightweight protocols inherently supporting security: As

implicitly shown in Table I, the design principle of SSTP is the

achievement of lightweight and secure transport protocol

implementation to provide affordable end-to-end solutions for

resource-constrained devices which find it hard to accommodate

known-but-heavy security and transport schemes.

B. Pre-shared key based authenticated key exchange (AKE)

 As is standard in secure communications, we operate with

long-term keys and session keys. Long-term keys are long-lived

credentials; in our case they are pre-shared keys (PSK) that each

client and server had agreed on before they entered the system.

PSKs are not used for secure data transport (as it is expensive to

replace them when compromised) and instead used as input to

AKE, a two-party protocol, which allows participants, upon

mutual authentication, to securely and privately determine one

session key. The output of the AKE, the session key, is then

used for securing data transport between the participants.

Pre-shared key assignment: Following our goal of achieving

server storage independent of the number of clients, we describe

how a server can efficiently store a large number of clients’

long-term keys. Our novel idea is to have these keys not to be

truly random, but, rather, pseudo-randomly generated from the

server’s master key k. That is, given a server’s master key k, for

a client with identity id, we set its long-term key kid = AESk (id).

The Advanced Encryption Standard (AES) function above can

be of course substituted by any suitable pseudorandom function

generator (PRFG). Each client with identity id is then

4
 In our presentation, we include the authenticated Diffie-Hellman (DH) key

agreement [17] to achieve perfect forward secrecy (PFS) – resilience of completed

key exchange sessions to possible future PSK compromise. We note that public-key

operations of DH can be avoided at the security cost of not achieving PFS. We further

stress that SSTP does not preclude the use of public-key-based credentials. If their use

is warranted (e.g., in many-to-many communications), and hardware supports this

(infrequent) expense, SSTP can be naturally modified to run certificate-based key

exchange. In the setting with small server state, our state-token approach is

particularly important, as it allows avoiding repeated expensive public-key-based KE.

175

provisioned, e.g., at the time of manufacture, with kid. The server

need not store this key, as he can readily generate it, given his

master key and the client’s identity. Security properties of PRFG

guarantee that none of the client keys can be distinguished from

a random string, even if the adversary obtains keys of all other

clients. Thus, these keys are safe to use.

Connection Establishment with Diffie-Hellman Exchange:

For a client-server pair, a secure transport connection is

established through the four-way handshake procedure shown in

Figure 1. All messages between clients and servers during

connection establishment phase are protected by a message

authentication code (MAC), computed with the PSK kB on the

corresponding message (denoted by MACkB). Also a symmetric

session key between a client-server pair is computed by the DH

key exchange providing protection against some dictionary

attacks and ensuring perfect forward secrecy.

Figure 1 shows client B intending to establish secure transport

connection with server A. B sends SYN (the connection request

in TCP) message. If server A receives SYN message missing the

state-token (the detail of state-token will be discussed next), it

creates a new state-token τ1 and sends back the ACK message

with state-token τ1. When client B gets the ACK message, prime

p, generator g, and secret exponent y are randomly generated.

Client B sends new SYN message containing state-token τ1 and

a set of numbers (p, g, and exponential g
x
) encrypted with PSK

kB. When server B gets the SYN message, it can decrypt the

numbers using PSK kB and compute symmetric session key β =

g
yx
 mod p from g

y
, p, and its own secret random exponent x.

(Actually β will be set to be a hash of the DH group element g
yx
,

but we omit this detail for clarity). Conversely, when client B

gets ACK message with new state-token τ2 and its server’s

encrypted exponential ENCkB (g
x
), it can compute the same

session key β from g
x
, p, and y (B’s secret random exponent).

In fact, the SSTP handshake procedure is broadly influenced

by TLS DHE_PSK key exchange [18] and TCP cookie

transaction [6]. The main difference is that servers preserve

neither transport nor security state for clients through the use of

state-token to be discussed next. Furthermore, compared with

alternatives, SSTP performs connection establishment procedure

combined with an AKE and thus overheads can be reduced.

β= (gy)x mod p.
τ2=ENCα(β···)

Server A Client B
SYN,MACkB

ACK, τ2, ENCkB
(gx), MACkB

Preserve a state-token τ2.

ACK, τ1, MACkB

SYN, τ1, ENCkB
(g, p, gy), MACkB

Create a state-token
τ1=ENCα(···). Create p, g, and y.

Create a random number x

β = (gx)y mod p.

 Figure 1: SSTP Connection Establishment with AKE.

C. State-token and Secure Communications

We now present the punch line of our approach, namely, the

technique to effectively offload the state associated with the

client to the client himself. At a high level, the idea is to encrypt

and authenticate the state, and store it at the client. We realize it

as illustrated in Figures 1 and 2. First, the server will maintain a

set of separate symmetric keys tkid, securely derived from each

client’s id (e.g., tkid = AESk (“tokenkey”,id)), for the purpose of

this encryption/authentication. Further, upon being about to send

ACK message to a client, the server encrypts and authenticates

with tkid the state (session key, time stamp, client’s id, and

counter) of our protocol’s association, and thus obtains a state-

token. This state token is then sent to the client and then erased

from the server together with session state. Client, upon receipt

of the token, stores it, and includes it verbatim in his next

message to the server. Note that the most-recent preserved state-

token can only be appended to new messages but not to

retransmission messages which must include old state-tokens

they originally included. We emphasize that the (encrypted)

state token is not further encrypted, in contrast with the rest of

the client’s message, so that server can decrypt the state token

and restore the session state. Upon receipt of the client’s

message, the server first extracts, decrypts, and verifies integrity

of the state token. Upon successful verification, the server

restores the session state, and processes the client’s message as

usual. Again, upon termination of the message processing, the

server repeats the above procedure.

On the client side, messages are encrypted and authenticated

using a session key β computed by the AKE. In the server side,

if the state-token verification passes, we can extract the

following from the state-token using a key tkid : session key β,

token issue time TSi, client’s id id, and counter, Ni. Then, the

message can be further processed if all the following conditions

hold: (1) the source of message equals to id, (2) the message’s

sequence number is greater than or equal to Ni, and (3) TSi is

less than current time and not beyond an age limit.

DATA, τi, ENCβ (dataB), MACβ

Extract β through DECα (τi).

Extract dataB from ENCβ (data).

τi+1=Eα(β···)

Server A Client B

DATA, ACK, τi+1, ENCβ (dataA), MACβ
Preserve a token τi+1.

Attach a preserved token τi.

Figure 2: SSTP Data Transfer.

D. Reliability and Latency

For scalability, a server has one receiving buffer across all its

clients and also no sending buffer. Recall that sensor data from

clients is continuously being sent to a server, while management

commands are rarely sent by the server to clients. A client can

send a new message immediately after the message stamped

with current time is written to the client’s sending buffer. In the

sending buffer, acknowledged messages are removed while

unacknowledged messages during a given time period are resent

using random back-off timers to avoid retransmission flooding.

Thus, lost messages to server can by design be recovered in

SSTP, while lost messages to clients cannot be recovered.

Reliable message delivery to clients can be implemented at the

applications level. In the face of persistent server failures, clients

can establish new secure connections with an alternative server.

From the latency perspective, a client can immediately send

messages without any delay unless its sending window is full. In

contrast, messages to clients are delayed to enable piggybacking

on acknowledgements to clients. Each client’s sending window

size is determined by the number of the clients per server as the

server expects its clients of evenly reducing their window size

when it has to serve more than an expected number of clients.

176

IV. EVALUATIONS

A. Security and Overhead

We now recap the security of SSTP – much of the security

argument appears along the presentation of the protocol design

in Section III. First, the long-term key generation is secure due

to the properties of PRFG. The follow-up AKE, chosen from the

literature and standards, is also secure. Finally, the composition

of the post-AKE secure session protocols with server offloading

is secure if replay attacks are eliminated as shown in Section V.

From view point of computation and memory overhead, we

compare SSTP to TLS over TCP (referred to as TLS hereafter).

Consider two types of TLS client-server association: long-lived

and short-lived. For the former, each client keeps an association

with its server during the lifetime of secure transport connection.

For the latter, it establishes a connection to its server to deliver a

message and terminates the connection after message delivery.

For a simple comparison, consider a large N-meters network

where each meter (client) sends sensed data to its data collector

(server) in a certain time intervalλ. Assume that the security and

transport state per client consumes L memory space in a server.

Short-lived TLS has high computation overhead for control,

since it repeatedly sets up a new connection per data every λ,

processes one data item, and deletes the connection. Seventeen

control messages are required to deliver the data (12 for client-

authenticated TLS establishment [3] and 5 for TCP

establishment and finish). It implies that short-lived TLS servers

severely use CPU, memory, and network resources just for

processing control messages, if λ is small. On the other hand,

long-lived TLS servers need O(NL) memory space to maintain

security-transport state for clients and also extra computation

overhead to lookup one corresponding state across O(N) state. It

means that long-lived TLS servers excessively uses memory and

also consumes CPU resource for the state lookup if λ is large.

Comparatively, SSTP servers have no overhead in computation

or memory usage as observed in alternatives irrespective of λ

and N because of stateless design. The overhead shown in SSTP

is state-token processing done per data received, which is not

higher than the state lookup of long-lived TLS. From the

communication aspect, SSTP clearly outperforms short-lived

TLS exchanging control messages every λ, and is similar to

long-lived TLS since the header size of the SSTP is comparable

to that of TLS. We stress that in SSTP, clients do not by design

send connection requests in the face of temporal server failures,

compared to alternatives where clients develop SYN flooding by

sending the requests within a time boundary.

B. Network Delay

We consider a congestion-free network expected in smart grid

data collection. However, this assumption is less favorable for

SSTP; in a congested network we expect the performance of

SSTP to be further improved relative to TLS. In the future, we

plan to test the performance of SSTP under network congestion.

Simulation Setting: We measure the end-to-end delay of TCP

Reno and SSTP under ns-2 simulation settings summarized in

Table II. A data source, representing a sensing node,

continuously injects 512byte packets into the network in a

periodic interval. As HSPA or WiMAX are expected to be used

for smart-grid access network technology, results [19] of

speedtest in Chicago Oct. 2010 are used for this simulation

setting: topology 1 represents ATT HSPA and topology 2

represents Clearwire WiMAX. TCP Reno is compared against

SSTP because [20] showed that TCP Cubic (the “better” TCP

variant) is outperformed by TCP Reno in terms of delay. Note

that this evaluation assumes that there is no loss, drop, and

reordering of messages. Thus this simulation focuses on the

effect of network delay and is free of the adverse consequences

of congestion control schemes and in-order sequence service.

Table II: NS-2 SIMULATION SETTINGS.

Network settings TCP Reno vs SSTP

- Uplink Speed
- Uplink Delay
- Downlink Speed
- Downlink Delay

278 kbps [topology 1]
240 ms
2.8 Mbps
160 ms

1 Mbps [topology 2]
120 ms
6 Mbps
80ms

TCP Specific settings 536B MSS, 64KB RX Buffer, and 40ms Delayed Ack.

Sensing Data Size 512 Byte Data over uplinks, ACK over downlinks

Data Injection Speed 10ms ~250ms (441.6kbps ~ 1.76kbps)

Simulation Duration 3 minutes after steady state

Figure 3: Average end-to-end delay comparisons.

Simulation results: As expected, SSTP outperforms TCP across

the topologies described in Table II. Figure 3 represents average

end-to-end delays of SSTP and TCP as a function of constant

bit-rate workloads. SSTP keeps pace with the physical link

speed under all settings except 10 ms data injection interval and

278 kbps bandwidth. In contrast, TCP always shows larger end-

to-end delay than RTT under conditions where the data injection

interval is smaller than RTT. In this evaluation, we notice two

properties of TCP. First, TCP’s end-to-end delay is extremely

high, about 46 sec when the network bandwidth is not sufficient

for transmission, as shown in Figure 3. Second, with enough

bandwidth, network delay dominates TCP’s end-to-end delay.

Interestingly the simulation result on topology 2 shows that TCP

is comparable to SSTP in large data injection intervals.

Based on our observation, we see that TCP works well only

under the following condition: Before the size of the

unacknowledged sending window reaches a congestion window

limit, the ACK is always returned to the sender and then data is

pushed from an application. Namely, when the data injection

interval is greater than RTT, and data is contained in one TCP

177

MSS, TCP’s end-to-end delay is close to one-way time from a

sender to a receiver, due to the always-open congestion window.

Otherwise, TCP shows the sensitivity to both data injection

interval and RTT (varies on media and routing between

communicating pairs). For example, under the condition where

the data injection interval is greater than round trip timeout

(RTO) value (minute scale), TCP’s end-to-end delay is at least

RTT without packet drop, if the packet size is more than one

TCP MSS, and at least the RTO value, even on single a packet

drop, irrespective of the packet size. In contrast, in terms of

delay, SSTP works well and is independent of the data injection

interval and network settings.

V. DISCUSSION ON SSTP VULNERABILITIES

The SSTP server is essentially stateless and may be vulnerable

to replay attacks. We now discuss how we protect the server

from this type of attack. First, we note that server’s secret-key-

based authentications of the state-tokens are un-forgeable and

with proper formatting and care one can prevent the adversary

from presenting a state-token generated for a client id1 as a state-

token for client id2. Further we will use deterministic encryption,

such as AES, so re-encrypting a state-token without knowledge

of a secret key is not possible either. Hence, the only venue of

the replay attack is the verbatim replay of one of the previously

generated state tokens with a possibly different session message.

We observe that session message is implicitly tied with the state-

token, since the session message (due to the necessary replay

protection inside secure session protocols) is cryptographically

tied with the client’s and server’s states, and thus with the state-

token. Thus, the only replay attack that remains to be considered

is the verbatim replay of the entire client’s message. And indeed,

our presentation so far is vulnerable to this attack. We now

discuss our protection technique. Firstly, a server will reject

“obviously old” messages through checking the token issue time

contained in a state-token. Still, we need to efficiently address

the possibility of replay of “not obviously too old” messages,

which might be up to several tens of seconds old (to allow for

clock skew). Our observation is that the number of messages

that can arrive in this time period of tens of seconds is not very

large, and therefore we can afford to keep the history of their

hashes. For each new message, we will check it against the

small recent history of hashes, and reject it if it is found in the

history; if not found, we proceed as before. One optimization

that we can implement is the use of Bloom filters [21] to greatly

reduce the hash table size, and to speed up the hash checks.

VI. CONCLUSION

In this work, we show that existing known protocols do not

meet the scalable secure transport requirements for smart grid

sensor data collection. Motivated by this, we design SSTP,

which achieves inherent security and meets transport

requirements. Our evaluation confirms that a combination of

TCP with TLS has scalability issues for sensor data collection in

large-scale networks, and TCP by itself is inappropriate for

periodic sensor data collection. For further study, we will

consider SSTP enhanced with a TCP-friendly congestion control

scheme [22] for sensor data collection over public networks.

VII. RELATED WORK

Relevant to our work is the body of recent research that has

examined end-to-end transport solutions over power line

communications [23] and RF mesh network [24]. We can

conclude from this literature that existing transport solutions are

not suitable for smart grid sensor data collection, which relies on

millisecond to minute scale measurements: average delay

between PLC slaves (meters) and a PLC master is about 10

minutes even in a 100-nodes network [23]. Up to one hour delay

was observed in a RF mesh network [24]. More importantly,

these prior solutions do not address scalable end-to-end security

extensions. Alternative directions are split-aggregation concepts

[10], where high-powered intermediate nodes aggregate data and

effectively respond to congestions through a hop-by-hop

delivery scheme, and so retransmissions are reduced. Under the

condition where congestion is rare, the impact of these

alternatives is confined to RTT reduction. However, the main

concern with this approach is that the end-to-end security can be

hurt since the split-aggregation requires TLS or IPSec sessions

to be terminated at intermediate nodes. We stress that SSTP can

be directly applied to the split-aggregation model after minor

modifications (omitted due to space constraints).

REFERENCES
[1] “Assessment of Demand Response and Advance Metering,” Federal Energy
Regulatory Commission, Staff Report Docket No.: AD-06-2-000, Aug., 2006.
[2] “TI MSP430 product brochure”, http://focus.ti.com/lit/sg/slab034t.pdf
[3] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol,”
IETF RFC 5246, Aug., 2008.
[4] S.Kent and K. Seo, “Security Architecture for the Internet Protocol”, IETF
RFC 4301, Dec., 2005.
[5] W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations,” IETF
RFC 4987, Aug., 2007.
[6] P. Metzger, W. Simpson, and P. Vixie, “Improving TCP Security With
Robust Cookies,” USENIX Magazine, Vol.34, No.6, Dec., 2009.
[7] R. Stewart, “Stream Control Transmission Protocol”, RFC4960, Sep., 2007.
[8] K. Ono and H. Schulzrine, “The Impact of SCTP on SIP Server Scalability
and Performance,” IEEE GLOBECOM, Nov., 2008.
[9] “Reduce Memory Footprint of TCP/IP stack”, http://infocenter.arm.com
/help/index.jsp?topic=/com.arm.doc.faqs/ka11285.html
[10] T. Khalifa, K. Naik, M. Alsabaan, A. Nayak, and N. Goel, “Transport
Protocol for Smart Grid Infrastructure”, IEEE UFN, June, 2010.
[11] R. Braden, “Requirements for Internet Hosts - Communication Layers,”
RFC1122, Oct., 1989.
[12] D. Bakken, C. Hauser, and H. Gjermundrod, "Delivery Requirements and
Implementation Guidelines for the NASPI net Data Bus," Proc. of IEEE
SmartGridComm, Oct., 2010.
[13] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP Latency,” IEEE
Infocom, Mar. 2000.
[14] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control”, IETF
RFC5681, Sep., 2009.
[15] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, “TCP Selective ACK
Options,” IETF RFC 2018, Oct. 1996.
[16] R. Stewart, M. Tuexen, and I. Ruengeler, “SCTP NAT,” draft-stewart-
behave-sctp-nat-04.txt, July., 2008.
[17] E. Rescorla, “Diffie-Hellman Key Agreement Method,” IETF RFC 2631,
June, 1999.
[18] P. Eronen and H. Tschofenig,“Pre-Shared Key Cipher suites for Transport
Layer Security (TLS),”, IETF RFC4279,Dec., 2005.
[19] “Review: Network speed test –WiMAX vs 3G,” Oct, 2010,
http://www.rcrwireless.com/ARTICLE/20101026/WIRELESS_FACTS_AND
_FIGURES/101029953/review-network-speed-test-8211-wimax-vs-3g.
[20] E. Halepovic, Q. Wu, C. Williamson, and M. Ghaderi, “TCP over WiMAX:
A Measurement Study,” IEEE MASCTOS, Sep., 2008.
[21] B. Bloom, "Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, Vol.13, No.7, Jul., 1970.
[22] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol,” IETF RFC 4340, Mar., 2006.
[23] M. Bauer, W. Plappert, C. Wang, and K. Dostert, “Packet-Oriented
Communication Protocols for Smart Grid Services over Low-Speed PLC,” IEEE
PLC and Its Applications, Mar., 2009.
[24] J. Paek and R. Govindan, “Rate-Controlled Reliable Transport Protocol for
Wireless Sensor Networks,” ACM SENSYS, Nov. 2007.

178

