
 

 

Abstract — Emerging smart grid networks are expected to have 

massive amounts of data continuously generated from various 

measuring devices (intelligent sensors, advanced meters, electric 

vehicle charging stations) which are embedded in the power grid. 

Data generated from these measuring devices must be delivered 

securely and reliably to utility control centers for wide-area 

monitoring and control and to estimate the overall grid status in a 

timely and precise manner. The collected data is also used for 

incentivizing consumer participation for improving power stability.  

Transport protocol requirements for such periodic grid 

measurement data are characterized as lifetime-lived, secure, and 

reliable delivery of short flows (usually less than 1.5 KB) over 

utility-Wide Area Networks (WANs). However, our survey shows 

that there is no well-known transport protocol that can support the 

above characteristics in a scalable and light-weight manner. 

Motivated by this, we design a scalable and secure transport 

protocol, SSTP, exploiting the notion of a “State-token” which is 

issued with each server message and which is subsequently 

attached to corresponding client message delivered to the server. 

Compared with existing well-known transport and security 

schemes, SSTP enables scalable server deployments as servers do 

not keep state (for security and communication) per client and thus 

computation/memory overheads are significantly reduced. 

I. INTRODUCTION 

The limited communication and security capability of non-IP 

based networks, currently deployed in utility power grids, are 

crucial impediments to future smart grid deployments aimed at 

improving energy efficiency, resiliency against power flow 

disruptions, and reducing carbon emissions by incorporating 

renewable energy sources. Therefore, the power industry is 

undergoing a major network transformation by designing a new 

IP-based smart grid communication network with enhanced 

security and reliability.  

One distinguishing aspect of the smart grid communication 

network is the large-scale deployment of sensors and smart 

meters which send periodic updates to the utility control center; 

e.g., in Manhattan, NY, several million meters must be deployed 

to cover all customer households. The IP network being 

deployed is expected to transport the sensor data in a trustworthy 

(secure and reliable) fashion to the utility’s control centers, 

where the data will be used to evaluate the grid state, and current 

electricity consumption. However, the sensors that generate the 

data are typically computationally constrained entities. It is in 

this context that we consider the specific problem of designing 

transport protocols that can scalably and securely deliver 

sensing data with low overhead in terms of memory space, 

computation, and communication bandwidth.  

Sensor data collection [1] is an integral part of smart grid 

communications. The data traffic generated from sensors or 

meters, which are typically located beyond utility security 

perimeters, is expected to be carried over a purpose-built utility 

network. The purpose-built utility network is isolated from the 

highly critical SCADA-based communication network
1
. It is 

also isolated from the public Internet
2
 because of the significant 

security and availability issues that are encountered when utility 

data traffic is multiplexed with Internet data traffic.  

The general characteristics of smart grid sensor data can be 

described as follows. First, data is carried over semi-permanent 

security and transport associations between sensors and utility-

side servers. Second, on the purpose-built utility network, data 

toward utility (north-bound data), such as meter readings, is 

periodically collected; in contrast, data originating from the 

utility (south-bound data), such as management information, is 

relatively rare. This implies that north-bound data would 

dominate network resource consumption, as compared with 

south-bound data. Third, north-bound data must be delivered in 

a reliable and timely fashion for precise estimation of instability-

induced conditions like a large mismatch between actual 

electricity usage and electricity supply based on day-ahead 

demand prediction. Comparatively, south-bound data to sensors 

or meters is not critical for reliable and timely delivery, since 

this information can be easily overridden by new data. Fourth, 

secure communication ensuring data credibility is necessary for 

safe power grid operations. We note that security requirements 

do not need to be symmetric. For example, authentication is 

mandatory for delivering the southbound electricity price 

information, but there is no requirement for confidentiality. In 

contrast, for the north bound metered data, both authentication 

and confidentiality are critical. Lastly, field sensors are unlikely 

to have a full set of operating systems and protocol stacks due to 

limited computation resources, while utility-side servers have 

plentiful computing resources to deal with the significant 

amount of data received from the large number of deployed 

sensors. E.g., TI MSP 430 microcontroller series [2] adopted in 

many sensor hardware platforms feature 2-18KB RAM, 1-

256KB EPROM, and 8-16MHz CPU: a subset of OS and 

protocol features can be installed for the platforms; however, 

due to lack of storage space, data has to be delivered to servers 

                                                           
1
 In this paper, the term, smart grid communication network, does not include the 

traditional SCADA communication between utility control center and substations that 

contain mission-critical power equipments. Note that the SCADA communication 

network is being improved through advanced IP technologies like MPLS for timely 

monitoring of substation status and safely controlling critical power equipments. 
2
  Note that Open Automated Demand Response (OpenADR) driven by National 

Lawrence Berkeley Lab is to our best knowledge the only known proposal replying on 

a public network. OpenADR documents outline technology neutral communications 

specification and data models using Internet-based Web Services to send demand 

response signal to end-use customer systems (http://openadr.lbl.gov). 
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in a utility network. To the best of our knowledge, there is no 

published protocol that accommodates above data transport 

requirements in a scalable and lightweight manner. 

To remedy the situation, we propose a scalable and secure 

transport protocol SSTP for smart grid data collection that 

addresses the above requirements. The key idea of SSTP is that 

the server does not need to maintain any state (for security and 

communication) on a per client basis. Our main contributions in 

this work are: (1) We design an inherent and lightweight 

security scheme for the SSTP protocol thus removing the costly 

dependency on support for TLS [3] or IPSec [4], (2) Our 

proposed state-token concept enables scalable stateless server 

deployments for data collection. One important security and 

transport benefit of implementing a stateless server is that SYN 

(the connection request in TCP) flooding from a large number of 

clients induced by server restarts or failures can be avoided.  

To motivate our design consideration, we first begin with a 

survey of current transport and security protocols, and highlight 

the necessity for designing novel scalable transport protocols for 

smart grid data collection. We will subsequently describe the 

protocol details for the Scalable Secure Transport Protocol 

(SSTP) along with its performance evaluation.    

II. REVIEW OF EXISTING TRANSPORT PROTOCOLS 

We now show that none of the existing transport protocols 

meets the security and reliability characteristics of the smart grid 

sensor data network in a scalable and lightweight manner. 

 TABLE I: FEATURES OF TRANSPORT PROTOCOLS. 

Features TCP SCTP SSTP 

Security Schemes TLS or IPSec TLS or IPSec Inherent built-in  

Flooding Attacks Cookie [5-6] Cookie [7] Cookie [6] 

Connection 
Establishment 

Three-way 
handshake 

Four-way 
handshake 

Four-way 
handshake 

Duplex Comm. Yes Yes Mostly simplex 

Reliable Delivery ACK with SACK ACK with SACK ACK 

In-ordered delivery Mandatory Optional None 

Sender-side delay Congestion Control Congestion Control None 

Receiver-side delay Delayed ACK Delayed ACK None 

Flow Control Receiving window Receiving window Sending window 

Transmission or 
Reception Buffer 

128KB per 
connection3 

128KB per 
connection 

 Chosen by 
applications 

Multi-homing/stream No Yes No 
 

Security and Scalability:  As shown in Table I, no well-known 

protocol has inherent data authentication and confidentiality 

extensions to prevent eavesdropping, tampering, or message 

forgery. Instead, external mechanisms such as TLS or IPSec are 

typically employed for ensuring data security. This is not 

problematic in itself; however this results in significant overhead 

in terms of negotiation procedures to accommodate low 

computing capable end devices. In addition, there is a concern as 

to whether TCP and SCTP can address end-to-end security for 

large-scaled and lifetime-lived communication environments in 

a scalable manner. Consider hourly meter readings in New York 

City. From networking aspect, meters send measured data to 

either far-side utility control center (UCC) or near-by 

                                                           
3
 For ensuring stable performance, 128KB is a default size tuned in Linux 

distributions. As shown in [8], RAM footprints for TCP and SCTP can be reduced 

even to 2KB and 12KB respectively. However, as described in [9], reduction to 2KB 

for TCP stack has to be carefully dealt since it is a trade-off between footprint 

reduction and performance degradation. 

aggregators from where the data is forwarded to utility UCC 

(split-aggregation [10]). In the former case, for a given number 

N of meters, UCC must either permanently keep O(N) states 

(security info, tx/rx buffer, connectivity info) or process O(N) 

secure connection requests per hour for meter readings. Neither 

of these approaches can avoid scalability concerns and single 

point of bottlenecks/failures in the UCC. On the other hand, the 

split-aggregation approach may be better with respect to 

performance and scalability. Unfortunately, this approach 

compromises the end-to-end confidentiality as it cannot 

maintain a TLS (or IPSec) session that spans from meters to 

UCC. Thus, data has to be decrypted at the aggregators and then 

encrypted again. Additionally, the overhead (memory footprint 

and CPU load) required for executing TLS along with either 

TCP or SCTP is expensive for resource-constrained end devices.  

Availability and Scalability: Existing well-known connection-

oriented transport protocols may incur SYN flooding when a 

utility-side server associated with a large number of sensors or 

meters is abruptly restarted or failed. All sensors associated with 

this server will simultaneously send thousands of connection 

requests to the server to reestablish their security associations 

with the utility as soon as possible. It would happen immediately 

after a restart or a power outage, regardless of the need to send 

any data to the UCC. Thus, transport protocols for smart grid 

data collection must address the SYN flooding problem and also 

be able to scalably manage lifetime-lived associations.  

TCP Latency & Reliability: In-order sequenced delivery of 

TCP can significantly increase latency under frequent packet 

drop in routers or packet loss over wireless links. TCP receivers 

buffer those received segments that are higher than the expected 

sequence number. This prevents the data from being delivered to 

a corresponding application until a segment having the expected 

sequence number arrives. This re-sequencing delay in the 

receiver results in increased end-to-end latency. However in-

order delivery is not required for smart grid data transport as 

data is always time-stamped at the sender side. Note that in-

order delivery can be disabled in SCTP, as shown in Table I. 

Delayed acknowledgement [11] typically enabled by default in 

TCP Reno or later versions reduces the number of ACKs to be 

sent-back to senders, and, accordingly, throughput and resource 

utilization are highly improved. However it can still increase the 

latency by up to 40ms under periodic data delivery for data sizes 

that are smaller than the maximum segment size (MSS). 

Typically, sensor data size is no more than 1KB [12]. For 

avoiding this receiver-side-induced latency problem, the delayed 

ACK timeout (in Linux, /proc/sys/net/ipv4/tcp_delack_min) can 

be reduced by administrators, but this is not a recommended 

action as manipulating the option can degrade performance [11].  

TCP enables reliable delivery by using the cumulative 

acknowledgement scheme. Thus, it follows that average TCP 

end-to-end delay [13] is more than one RTT (Round-Trip Time) 

even under ideal network conditions, where no packet is 

dropped or lost, and there is no delay caused by flow control due 

to the large sliding window size on the receiver side. TCP 

congestion control schemes [14] can prolong delivery latency in 

the face of packet drop or loss. The sender-side retransmits lost 

segments after receiving either three duplicated 
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acknowledgements received (fast recovery) or a timeout is 

expired (slow start). These schemes were devised for avoiding 

unnecessary retransmissions by discriminating between lost 

segments and late-arriving segments which took a longer path (it 

can occur due to IP routing protocols such as OSPF). Thus, the 

sender-side by design increases the retransmission delay. The 

TCP congestion control algorithm limits the data injection speed 

until network recovers from the congestion event. Selective 

acknowledgement scheme [15] combined with the cumulative 

acknowledgement scheme deal with latency issues by quickly 

recovering multiple lost segments. However, the first among 

recovered segments has no performance gain as its delivery is 

tried only after the receipt of three duplicate acknowledgements.  

Latency, Heavyweightness, & NAT-unfriendliness of SCTP: 

SCTP was devised to deliver aggregated telephony messages 

between high-powered telecommunication systems with 

multiple line cards. For avoiding line blocking in one multi-

streamed connection, in-order sequenced delivery is disabled in 

SCTP and thus the buffering delay in the receiver side is 

reduced. However, SCTP is not completely free of the latency 

issues of TCP, due to the congestion control and delayed ACK 

implementation inherited from TCP. Also, it is unlikely that 

SCTP can run on sensors or meters with limited computing 

resources (e.g., 10 KB RAM), as even the SCTP lightweight 

version [8] is relatively heavy in terms of memory usage and 

CPU load for message processing. Moreover, a recent report 

[16] shows that the choice of SCTP must be made carefully 

under environments with NAT (Network Address Translation) 

traversal. Most currently deployed NAT boxes are not SCTP-

friendly. However, due to its high assurance features, SCTP may 

be a good transport candidate for some smart grid applications, 

such as substation automation, requiring multi-homed 

communications between the UCC and the substations 
 

Based on this review we conclude that existing transport 

protocols are insufficient to address the transport characteristics 

of the smart grid sensor network. We next discuss design 

motivation of the SSTP. First, we point out that the smart grid 

sensor network typically consists of measured data whose size is 

such that it can be contained in one protocol message without 

being segmented into multiple chunks. It means that traffic flow-

based semantics employed in most known transport protocols 

are inappropriate in this case. Also, since the data is carried over 

a purpose-built utility network, packets are rarely lost due to 

congestion. It means that a congestion control scheme is also not 

required for the data collection. 

III. DESIGN OF SSTP 

In our approach, we address all inefficiencies of prior protocols 

and build our presentation in a top-down manner for simplicity 

of presentation and understanding.  

A. Overview of the approach 

Our main goal for SSTP is scalability both in terms of security 

and communications. Due to the special communication patterns 

of data collection – a large number of clients infrequently 

communicating with servers, we identify the following avenues 

for significant optimizations. 

Symmetric-key-based protocols: In data collection, clients 

only talk to the server, and one pre-shared key (PSK) per client 

will suffice. In this setting, the use of costly public-key 

credentials will not bring its benefit of system-wide reduction of 

the number of keys. Since symmetric key operations are 

hundreds of times faster than public-key ones, SSTP using only 

symmetric-key operations for all security extensions.
4
  

Server’s state independent of the number of clients: In data 

collection such as meter readings, the server must continuously 

maintain associations with a very large number of clients, who 

communicate periodically-but-infrequently. Maintaining such 

associations is very taxing on system resources, if, as is standard 

in practice and research protocols, the server in fact keeps 

security and transport information associated with the session 

(keys, counters, and so on.). Our basic idea is to provide a light-

weight (both for client and the server) implementation which 

encrypts and authenticates the associated session state, and then 

gives the resulting encryption for the client to temporarily store 

and returns it to the server with his next message. In this way, a 

server does not keep session state after sending the encryption 

back to a client and can quickly restore it when the next message 

from the client arrives. Note that our idea can avoid extreme 

overloading in the face of server restart or failures.  

Lightweight protocols inherently supporting security:  As 

implicitly shown in Table I, the design principle of SSTP is the 

achievement of lightweight and secure transport protocol 

implementation to provide affordable end-to-end solutions for 

resource-constrained devices which find it hard to accommodate 

known-but-heavy security and transport schemes.  

B. Pre-shared key based authenticated key exchange (AKE) 

 As is standard in secure communications, we operate with 

long-term keys and session keys. Long-term keys are long-lived 

credentials; in our case they are pre-shared keys (PSK) that each 

client and server had agreed on before they entered the system. 

PSKs are not used for secure data transport (as it is expensive to 

replace them when compromised) and instead used as input to 

AKE, a two-party protocol, which allows participants, upon 

mutual authentication, to securely and privately determine one 

session key. The output of the AKE, the session key, is then 

used for securing data transport between the participants.  

Pre-shared key assignment: Following our goal of achieving 

server storage independent of the number of clients, we describe 

how a server can efficiently store a large number of clients’ 

long-term keys. Our novel idea is to have these keys not to be 

truly random, but, rather, pseudo-randomly generated from the 

server’s master key k. That is, given a server’s master key k, for 

a client with identity id, we set its long-term key kid = AESk (id).  

The Advanced Encryption Standard (AES) function above can 

be of course substituted by any suitable pseudorandom function 

generator (PRFG). Each client with identity id is then 

                                                           
4
 In our presentation, we include the authenticated Diffie-Hellman (DH) key 

agreement [17] to achieve perfect forward secrecy (PFS) – resilience of completed 

key exchange sessions to possible future PSK compromise. We note that public-key 

operations of DH can be avoided at the security cost of not achieving PFS. We further 

stress that SSTP does not preclude the use of public-key-based credentials. If their use 

is warranted (e.g., in many-to-many communications), and hardware supports this 

(infrequent) expense, SSTP can be naturally modified to run certificate-based key 

exchange. In the setting with small server state, our state-token approach is 

particularly important, as it allows avoiding repeated expensive public-key-based KE. 

175



 

provisioned, e.g., at the time of manufacture, with kid. The server 

need not store this key, as he can readily generate it, given his 

master key and the client’s identity. Security properties of PRFG 

guarantee that none of the client keys can be distinguished from 

a random string, even if the adversary obtains keys of all other 

clients. Thus, these keys are safe to use.  

Connection Establishment with Diffie-Hellman Exchange: 

For a client-server pair, a secure transport connection is 

established through the four-way handshake procedure shown in 

Figure 1. All messages between clients and servers during 

connection establishment phase are protected by a message 

authentication code (MAC), computed with the PSK kB on the 

corresponding message (denoted by MACkB).  Also a symmetric 

session key between a client-server pair is computed by the DH 

key exchange providing protection against some dictionary 

attacks and ensuring perfect forward secrecy.  

Figure 1 shows client B intending to establish secure transport 

connection with server A.  B sends SYN (the connection request 

in TCP) message. If server A receives SYN message missing the 

state-token (the detail of state-token will be discussed next), it 

creates a new state-token τ1 and sends back the ACK message 

with state-token τ1. When client B gets the ACK message, prime 

p, generator g, and secret exponent y are randomly generated.  

Client B sends new SYN message containing state-token τ1 and 

a set of numbers (p, g, and exponential g
x
) encrypted with PSK 

kB. When server B gets the SYN message, it can decrypt the 

numbers using PSK kB and compute symmetric session key β = 

g
yx
 mod p from g

y
, p, and its own secret random exponent x. 

(Actually β will be set to be a hash of the DH group element g
yx
, 

but we omit this detail for clarity). Conversely, when client B 

gets ACK message with new state-token τ2 and its server’s 

encrypted exponential ENCkB (g
x
), it can compute the same 

session key β from g
x
, p, and y (B’s secret random exponent). 

In fact, the SSTP handshake procedure is broadly influenced 

by TLS DHE_PSK key exchange [18] and TCP cookie 

transaction [6]. The main difference is that servers preserve 

neither transport nor security state for clients through the use of 

state-token to be discussed next. Furthermore, compared with 

alternatives, SSTP performs connection establishment procedure 

combined with an AKE and thus overheads can be reduced. 

β= (gy)x mod p.
τ2=ENCα(β···)

Server A Client B
SYN,MACkB

ACK, τ2, ENCkB
(gx), MACkB

Preserve a state-token τ2.

ACK, τ1, MACkB

SYN, τ1, ENCkB
(g, p, gy), MACkB

Create a state-token
τ1=ENCα(···). Create p, g, and y.

Create a random number x

β = (gx)y mod p.

          Figure 1: SSTP Connection Establishment with AKE. 
 

C. State-token and Secure Communications 

We now present the punch line of our approach, namely, the 

technique to effectively offload the state associated with the 

client to the client himself. At a high level, the idea is to encrypt 

and authenticate the state, and store it at the client. We realize it 

as illustrated in Figures 1 and 2. First, the server will maintain a 

set of separate symmetric keys tkid, securely derived from each 

client’s id (e.g., tkid = AESk (“tokenkey”,id) ), for the purpose of 

this encryption/authentication. Further, upon being about to send 

ACK message to a client, the server encrypts and authenticates 

with tkid the state (session key, time stamp, client’s id, and 

counter) of our protocol’s association, and thus obtains a state-

token. This state token is then sent to the client and then erased 

from the server together with session state. Client, upon receipt 

of the token, stores it, and includes it verbatim in his next 

message to the server. Note that the most-recent preserved state-

token can only be appended to new messages but not to 

retransmission messages which must include old state-tokens 

they originally included. We emphasize that the (encrypted) 

state token is not further encrypted, in contrast with the rest of 

the client’s message, so that server can decrypt the state token 

and restore the session state. Upon receipt of the client’s 

message, the server first extracts, decrypts, and verifies integrity 

of the state token. Upon successful verification, the server 

restores the session state, and processes the client’s message as 

usual. Again, upon termination of the message processing, the 

server repeats the above procedure. 

On the client side, messages are encrypted and authenticated 

using a session key β computed by the AKE. In the server side, 

if the state-token verification passes, we can extract the 

following from the state-token using a key tkid : session key β, 

token issue time TSi, client’s id id, and counter, Ni. Then, the 

message can be further processed if all the following conditions 

hold: (1) the source of message equals to id, (2) the message’s 

sequence number is greater than or equal to Ni, and (3) TSi is 

less than current time and not beyond an age limit.  

DATA, τi, ENCβ (dataB), MACβ

Extract β through DECα (τi).

Extract dataB from ENCβ (data).

τi+1=Eα(β···)

Server A Client B

DATA, ACK, τi+1, ENCβ (dataA), MACβ
Preserve a token τi+1.

Attach a preserved token τi.

Figure 2: SSTP Data Transfer. 
 

D. Reliability and Latency 

For scalability, a server has one receiving buffer across all its 

clients and also no sending buffer. Recall that sensor data from 

clients is continuously being sent to a server, while management 

commands are rarely sent by the server to clients. A client can 

send a new message immediately after the message stamped 

with current time is written to the client’s sending buffer. In the 

sending buffer, acknowledged messages are removed while 

unacknowledged messages during a given time period are resent 

using random back-off timers to avoid retransmission flooding. 

Thus, lost messages to server can by design be recovered in 

SSTP, while lost messages to clients cannot be recovered. 

Reliable message delivery to clients can be implemented at the 

applications level. In the face of persistent server failures, clients 

can establish new secure connections with an alternative server. 

From the latency perspective, a client can immediately send 

messages without any delay unless its sending window is full. In 

contrast, messages to clients are delayed to enable piggybacking 

on acknowledgements to clients. Each client’s sending window 

size is determined by the number of the clients per server as the 

server expects its clients of evenly reducing their window size 

when it has to serve more than an expected number of clients.  
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IV. EVALUATIONS 

A. Security and Overhead 

We now recap the security of SSTP – much of the security 

argument appears along the presentation of the protocol design 

in Section III. First, the long-term key generation is secure due 

to the properties of PRFG. The follow-up AKE, chosen from the 

literature and standards, is also secure. Finally, the composition 

of the post-AKE secure session protocols with server offloading 

is secure if replay attacks are eliminated as shown in Section V.  

From view point of computation and memory overhead, we 

compare SSTP to TLS over TCP (referred to as TLS hereafter). 

Consider two types of TLS client-server association: long-lived 

and short-lived. For the former, each client keeps an association 

with its server during the lifetime of secure transport connection. 

For the latter, it establishes a connection to its server to deliver a 

message and terminates the connection after message delivery. 

For a simple comparison, consider a large N-meters network 

where each meter (client) sends sensed data to its data collector 

(server) in a certain time intervalλ. Assume that the security and 

transport state per client consumes L memory space in a server. 

Short-lived TLS has high computation overhead for control, 

since it repeatedly sets up a new connection per data every λ, 

processes one data item, and deletes the connection.  Seventeen 

control messages are required to deliver the data (12 for client-

authenticated TLS establishment [3] and 5 for TCP 

establishment and finish). It implies that short-lived TLS servers 

severely use CPU, memory, and network resources just for 

processing control messages, if λ is small. On the other hand, 

long-lived TLS servers need O(NL) memory space to maintain 

security-transport state for clients and also extra computation 

overhead to lookup one corresponding state across O(N) state. It 

means that long-lived TLS servers excessively uses memory and 

also consumes CPU resource for the state lookup if λ is large. 

Comparatively, SSTP servers have no overhead in computation 

or memory usage as observed in alternatives irrespective of λ 

and N because of stateless design. The overhead shown in SSTP 

is state-token processing done per data received, which is not 

higher than the state lookup of long-lived TLS. From the 

communication aspect, SSTP clearly outperforms short-lived 

TLS exchanging control messages every λ, and is similar to 

long-lived TLS since the header size of the SSTP is comparable 

to that of TLS. We stress that in SSTP, clients do not by design 

send connection requests in the face of temporal server failures, 

compared to alternatives where clients develop SYN flooding by 

sending the requests within a time boundary. 

B. Network Delay  

We consider a congestion-free network expected in smart grid 

data collection. However, this assumption is less favorable for 

SSTP; in a congested network we expect the performance of 

SSTP to be further improved relative to TLS. In the future, we 

plan to test the performance of SSTP under network congestion. 

Simulation Setting: We measure the end-to-end delay of TCP 

Reno and SSTP under ns-2 simulation settings summarized in 

Table II. A data source, representing a sensing node, 

continuously injects 512byte packets into the network in a 

periodic interval. As HSPA or WiMAX are expected to be used 

for smart-grid access network technology, results [19] of 

speedtest in Chicago Oct. 2010 are used for this simulation 

setting: topology 1 represents ATT HSPA and topology 2 

represents Clearwire WiMAX. TCP Reno is compared against 

SSTP because [20] showed that TCP Cubic (the “better” TCP 

variant) is outperformed by TCP Reno in terms of delay. Note 

that this evaluation assumes that there is no loss, drop, and 

reordering of messages. Thus this simulation focuses on the 

effect of network delay and is free of the adverse consequences 

of congestion control schemes and in-order sequence service. 
 

Table II: NS-2 SIMULATION SETTINGS. 

Network settings TCP Reno vs SSTP 

- Uplink Speed 
- Uplink Delay 
- Downlink Speed 
- Downlink Delay 

278 kbps [topology 1] 
240 ms 
2.8 Mbps 
160 ms 

1 Mbps [topology 2] 
120 ms 
6 Mbps 
80ms 

TCP Specific settings 536B MSS, 64KB RX Buffer, and 40ms Delayed Ack. 

Sensing Data Size  512 Byte Data over uplinks, ACK over downlinks 

Data Injection Speed  10ms ~250ms (441.6kbps ~ 1.76kbps) 

Simulation Duration 3 minutes after steady state 
 

 
 

 
Figure 3: Average end-to-end delay comparisons. 

 

Simulation results: As expected, SSTP outperforms TCP across 

the topologies described in Table II. Figure 3 represents average 

end-to-end delays of SSTP and TCP as a function of constant 

bit-rate workloads. SSTP keeps pace with the physical link 

speed under all settings except 10 ms data injection interval and 

278 kbps bandwidth. In contrast, TCP always shows larger end-

to-end delay than RTT under conditions where the data injection 

interval is smaller than RTT. In this evaluation, we notice two 

properties of TCP. First, TCP’s end-to-end delay is extremely 

high, about 46 sec when the network bandwidth is not sufficient 

for transmission, as shown in Figure 3. Second, with enough 

bandwidth, network delay dominates TCP’s end-to-end delay. 

Interestingly the simulation result on topology 2 shows that TCP 

is comparable to SSTP in large data injection intervals.  

Based on our observation, we see that TCP works well only 

under the following condition: Before the size of the 

unacknowledged sending window reaches a congestion window 

limit, the ACK is always returned to the sender and then data is 

pushed from an application. Namely, when the data injection 

interval is greater than RTT, and data is contained in one TCP 
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MSS, TCP’s end-to-end delay is close to one-way time from a 

sender to a receiver, due to the always-open congestion window. 

Otherwise, TCP shows the sensitivity to both data injection 

interval and RTT (varies on media and routing between 

communicating pairs). For example, under the condition where 

the data injection interval is greater than round trip timeout 

(RTO) value (minute scale), TCP’s end-to-end delay is at least 

RTT without packet drop, if the packet size is more than one 

TCP MSS, and at least the RTO value, even on single a packet 

drop, irrespective of the packet size. In contrast, in terms of 

delay, SSTP works well and is independent of the data injection 

interval and network settings. 

V. DISCUSSION ON SSTP VULNERABILITIES 

The SSTP server is essentially stateless and may be vulnerable 

to replay attacks. We now discuss how we protect the server 

from this type of attack. First, we note that server’s secret-key-

based authentications of the state-tokens are un-forgeable and 

with proper formatting and care one can prevent the adversary 

from presenting a state-token generated for a client id1 as a state-

token for client id2. Further we will use deterministic encryption, 

such as AES, so re-encrypting a state-token without knowledge 

of a secret key is not possible either. Hence, the only venue of 

the replay attack is the verbatim replay of one of the previously 

generated state tokens with a possibly different session message. 

We observe that session message is implicitly tied with the state-

token, since the session message (due to the necessary replay 

protection inside secure session protocols) is cryptographically 

tied with the client’s and server’s states, and thus with the state-

token. Thus, the only replay attack that remains to be considered 

is the verbatim replay of the entire client’s message. And indeed, 

our presentation so far is vulnerable to this attack. We now 

discuss our protection technique. Firstly, a server will reject 

“obviously old” messages through checking the token issue time 

contained in a state-token. Still, we need to efficiently address 

the possibility of replay of “not obviously too old” messages, 

which might be up to several tens of seconds old (to allow for 

clock skew). Our observation is that the number of messages 

that can arrive in this time period of tens of seconds is not very 

large, and therefore we can afford to keep the history of their 

hashes. For each new message, we will check it against the 

small recent history of hashes, and reject it if it is found in the 

history; if not found, we proceed as before. One optimization 

that we can implement is the use of Bloom filters [21] to greatly 

reduce the hash table size, and to speed up the hash checks. 

VI. CONCLUSION 

In this work, we show that existing known protocols do not 

meet the scalable secure transport requirements for smart grid 

sensor data collection. Motivated by this, we design SSTP, 

which achieves inherent security and meets transport 

requirements. Our evaluation confirms that a combination of 

TCP with TLS has scalability issues for sensor data collection in 

large-scale networks, and TCP by itself is inappropriate for 

periodic sensor data collection. For further study, we will 

consider SSTP enhanced with a TCP-friendly congestion control 

scheme [22] for sensor data collection over public networks. 

VII. RELATED WORK 

Relevant to our work is the body of recent research that has 

examined end-to-end transport solutions over power line 

communications [23] and RF mesh network [24]. We can 

conclude from this literature that existing transport solutions are 

not suitable for smart grid sensor data collection, which relies on 

millisecond to minute scale measurements: average delay 

between PLC slaves (meters) and a PLC master is about 10 

minutes even in a 100-nodes network [23]. Up to one hour delay 

was observed in a RF mesh network [24]. More importantly, 

these prior solutions do not address scalable end-to-end security 

extensions. Alternative directions are split-aggregation concepts 

[10], where high-powered intermediate nodes aggregate data and 

effectively respond to congestions through a hop-by-hop 

delivery scheme, and so retransmissions are reduced. Under the 

condition where congestion is rare, the impact of these 

alternatives is confined to RTT reduction. However, the main 

concern with this approach is that the end-to-end security can be 

hurt since the split-aggregation requires TLS or IPSec sessions 

to be terminated at intermediate nodes. We stress that SSTP can 

be directly applied to the split-aggregation model after minor 

modifications (omitted due to space constraints). 
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